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On the non-existence of subcritical instabilities in 
fluid layers heated from below 
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Using some recent results it is established that, for very general boundary 
conditions, time-independent subcritical instabilities do not exist for the non- 
linear thermoconvective stability problem. 

1. Introduction 
It has recently been rigorously established by Ukhovskii & Iudovich ( 1963) and 

Sani & Scriven ( 1964) that the linearized thermoconvective stability problem 
for a thin, bounded or unbounded, horizontal fluid layer (neglecting surface- 
tension effects and using the Boussinesq approximation) can be recast in a 
maximum (or minimum) formulation. Ukhovskii & Iudovich primarily treated 
the linear and non-linear stability problem for a bounded fluid layer with fixed- 
conducting bottom and top surfaces; Sani & Scriven treated the linear stability 
problem for both bounded and transversely infinite fluid layers subjected to very 
general boundary conditions at the top and bottom surfaces. In  particular, the 
boundary conditions include those of a transversely infinite fluid layer subjected 
to a rigid bottom and free top surface with a general boundary condition of the 
third kind imposed on the temperature field. Here the results of these two 
investigations are coupled in order to establish the non-existence of a time- 
independent subcritical instability, i.e. an instability which can occur at a 
lower Rayleigh number than predicted by linear theory. Since a subcritical 
instability is a non-linear effect, the non-linear thermoconvective stability 
problem must be considered. In  the present case results of linear theory coupled 
with an integral relation are sufficient to establish the non-existence of sub- 
critical instabilities (see Ukhovskii & Iudovich 1963 for a particular case). This 
result answers the open question of the possible occurrence of subcritical 
hexagonal cells in a transversely infinite fluid layer with a rigid bottom and free 
top surface (cf. Stuart 1 9 6 0 ~ )  and also indicates that the Stuart-Watson method 
for investigating finite-amplitude instabilities yields results which are in agree- 
ment with the over-all behaviour of the non-linear equations. That is, in those 
cases of the non-linear problem (1)  and (2) which have been examined by the 
Stuart-Watson method (cf. Stuart 1960b and Watson 1960) no subcritical 
instabilities have been found. 

$ Present address: Department of Chemical Engineering, University of Illinois, Urbana, 
Illinois. 



316 R. Sani 

2. Basic equations 

in the form (using the Boussinesq approximations) : 
The equations characterizing a time-independent instability can be written 

e2W + RgG. W - P .  W = B .  (W .'?W)) 
( 1 )  

( 2 )  

Q.W = 0, P . W  = vp 
iin v, 

n . $ W + A . W - R * M . W  = 0, on aV, 

where n is a unit outward-pointing normal on the surface aV, W is the hyper- 
vector u+eT, u is the velocity vector, T is the temperature excess over that 
which exists in the initial quiescent state, e is a unit abstract vector which is 
orthogonal to the basis vectors of physical space, 

F2W = V2u+eV2T, 

B = U+N,ee  
TW = Vu+V(eT), 

9 . W  = V . u ,  

G = m e + e m ,  
(3)  

U is the unit dyadic of physical space, N, is the Prandtl number, m is a unit 
vector antiparallel to the gravitational field, and A and M are linear dyadic 
operators which possess the following properties : 

(A:WV-A:VW)ds = 0, farA:WWds 3 
f a r  

$ (M:WV-M:VW)ds=O, 
nr- 

and the quadratic form 

faJ7  M :  WWds 

is either bounded with respect to the quadratic form 

JJ7 G:  WW dv (44 

or compact with respect to the quadratic form D(W; W) which is to be defined. 
In performing contractions on dyadic operators the convention as developed by 
Gibbs (see Phillips 1933) is in force. One boundary condition of the general 
form (2) has been used for convenience. The dyadic operators A and M will in 
general be functions of position on aV in order to satisfy conditions on the vertical 
boundaries which are necessary for an initial quiescent state to be realizable and 
to satisfy the condition n.u  = 0 on aV which results because the physical 
system is closed. In  the case of transversely infinite fluid layers, solutions are 
sought which have planform in the transverse directions (i.e. close packed 
cellular array) and the planform restriction can be written in the form of ( 2 )  by 
proper choice of A and M .  
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3. Non-existence of subcritical instabilities 
As previously mentioned it has been shown that the linearized stability problem 

in V ,  
VV+R+G.V = P'.V 

9.v = 0,  P'.V = on 
with boundary condition ( 2 )  is equivalent to the extremal problem 

where A, is the largest characteristic value for which a non-trivial solution exists 
for the linear stability problem ( 5 )  and ( 2 )  (i.e. the smallest Rayleigh number $2,). 
Here 

E(U; U) =JrrG: UUdv+$ M :  UUds, 
a r  

( 7  denotes a transpose), and Wis the Hilbert space generated by closing a set of 
vectors U which have solenoidal velocity fields, continuous second-order deri- 
vatives and satisfy the boundary condition (2) under the norm [D(U; U)$. 

Now scalarly multiplying equation (1) by W, a solution of the non-linear 
equations for some R, $ and integrating over the region V ,  yields 

However, as noted by Ukhovskii & Iudovich (1963), 

Iv B :  (W.FW) Wdv = [( U + N ,  ee): ((u+ eT). (Vu + VeT)} (u + eT)] dv 
I v  

- -?Ip. 

= Jr (u + e T ) .  (u. vu +%eu.VT) dv 

= (uu: Vu + N,@. VT2) dv 

(u . u + N,T2)V. u d v  + 4 (u . u + N,T2)n. uds = 0 ,  

(9) 

h = E(W; W)/D(W; W), A R-9. (10) 

R% < R+ ( 1 1 )  

1 
f a v  

- 

because V . u = 0 in V and n . u = 0 on 3F'. Hence relation (8) becomes 

By a comparison of relations (10) and (6) it follows that 

and, consequently, a subcritical instability cannot occur in a thermoconvective 
stability problem characterized by equations (1)  and ( 2 ) .  

$ Also, by methods analogous to those used by Ukhovslrii & Iudovich (1963) or Lady- 
shenskya (1963), i t  can be shown that for some value R a solution to equation (1) exists in 
$by providing the boundary aV is sufficiently smooth. 
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4. Transversely infinite fluid layers 
Next it will be shown that equality in equation (1 1) cannot hold for a trans- 

versely infinite fluid layer. If W were to yield the minimum Rayleigh number R,, 
then W would have to satisfy the Euler equation of the extremal problem (6) 
whose form would be similar to equation ( 5 )  with V replaced by W and I1 by IIl. 
A comparison of equation (1) and the above Euler equation yields 

W.OW = Q.W, (12) 

where Q . W = V q  and q is a scalar field. In  component form equation ( l a )  
becomes 

and 
u.vu = vq 

u.VT = 0. 

Hence, if a solution to the non-linear stability problem (1) and (2) is to exist at 
the minimum Rayleigh number R,, then it would necessarily be a solution of the 
equation of motion of an inviscid (rotational) fluid, the transport equation 
u . VT = 0 and the linear stability problem with boundary conditions (2). 

It can be shown that the solution of the linear stability problem for a trans- 
versely infinite horizontal fluid layer perpendicular to the 2,-axis can be repre- 
sented in the form 

u = k w ( x ~ )  F(x,, ~ 2 )  + CC-~[DW V,, F - C ( X ~ )  k x VI,  3’1, 

17 = $4.3) P ( X 1 ,  x2). 

(14)  

(15) 

Here D = d/dx3, k .  x = x3, <(x3) is the x,-dependence of the x,-component of 
vorticity, a is a real constant, V,,  = a/axl i + a/ax2 j, i .  x = xl, j . x = x2 and 
F(x,, x2) is the so-called planform function which satisfies the two-dimensional 

(16) 
scalar Helmholtz equation 

with in general F = 0 on 8% and n. V,, F = 0 on aG where aK = av, + a& is the 
vertical boundary of a cell and n is a unit outward-pointing normal on 86. 
Therefore, if it  is required that 

V & P  = -a2F, 

u.VT = 0 ,  

then 

Since the left side of (17)  is a function of x3 and the right side of (1 7)  is a function 
of xl and x2, i t  follows that both must be equal to a constant /I. Namely, 

(18)  

V,IF.VIIF = -/Ia2F2. (19) 

D(ln +) = pD(ln w), 

However, F(xl, x2) satisfies equation (16) and the associated boundary conditions; 
consequently, from Green’s identity i t  follows that 

m m  m m  

JJ V,,F.V,,FdA = a2JJ F2dA, 
U U 
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where U is the xl, x2 cross-section of a cell and dA = dxldx2. Integrating both 
sides of equation (1  9) yields 

j j u  V,, F . V,, P d A  = - a2P ssc. F2 dA. (21) 

Comparing equations (20) and (21) yields p = - 1. Substituting p = - 1 into 
equation (18) and integrating yields 

@w = b, (22) 

where b = const. Since w = 0 at x3 = 0,1,  it follows from equation (22) that b = 0. 
Consequently, @w = 0 in U .  

Now consider the special case where M = 0 (or Mis bounded with respect to G, 
see ( 4 b )  and (4c)). Then the condition @w = 0 in U leads to the condition 
E ( W ;  W) = 0 and consequently, from the linear stability problem, 

D(W; W) = 0, (23) 

if R, is finite. But, from equation (23), it  follows that W = 0. 
Consequently, a non-trivial solution of the linear stability problem for a 

transversely infinite horizontal fluid layer a t  R = R, cannot be a solution of the 
non-linear stability problem (1)  for the special case M = 0 employed in the above 
discussion. I n  particular, this result establishes that the non-linear stability 
problem has only the trivial solution W = 0 for R = Ro in the case of a trans- 
versely infinite horizontal fluid layer subjected to free or fixed (or combinations 
of both types) horizontal boundaries. Again a result which is in accord with 
known results of the Stuart-Watson perturbation method. 

This research was sponsored by the National Science Foundation under 
grant GP-2337. 
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